
RSE-ops: Fostering Culture for Collaboration in
Research Software Engineering

Sochat, Vanessa Gamblin, Todd Add your name here!

Abstract
Research Software Engineering is becoming increasingly more complex in terms
of technology and the need for communication between teams needing to work
in both high performance computing (HPC) and cloud computing environments.
This challenge would be well addressed by a movement to identify categories of
functional need in this space, and best practices and tools used for each. In this
paper we introduce ”RSE-ops,” or Research Software Engineering Operations,
a movement to mirror DevOps (Atlassian, n.d.), best practices to bridge devel-
opment and operations in typically cloud communities, and provide structure
for better collaboration and navigation of the space.

Introduction
Successful development, deployment, and maintenance of research software is
central to scientific discovery. In the last decade, the role of Research Software
Engineer (RSE) (“A Not-so-Brief History of Research Software Engineers,” n.d.)
has risen to awareness, and fostered a community of combined researchers and
software developers that focus almost exclusively on this task.

While some RSEs work on research software separate from its application, others
are embedded in labs and responsible for data processing, analysis, and other-
wise running tasks at scale to produce research outputs. These RSEs, whether
they be staff at national labs, academic institutions, or private research insti-
tutes, historically have used some form of high performance computing (HPC)
to achieve this scale (Wikipedia contributors 2021c; “A Brief History of High-
Performance Computing (HPC) - XSEDE Home - XSEDE Wiki,” n.d.).

This traditional practice has slowly been changing with the availability of cloud
computing (Scality 2020). As the technological gap between HPC and cloud
computing is closing (Guidi et al. 2020), and the cloud can equally meet the
needs of research groups (“Challenging the Barriers to High Performance Com-
puting in the Cloud - HPCwire” 2020), Research Software Engineers are pre-

1



sented with the task of working in both spaces. As they discover best practices
and tools, there arises the need to write all of this knowledge down. Synthe-
sizing what we know not only identifies what we know, but also what we don’t
know and where there are gaps that require attention or work. Arguably, a
mature community should have awareness of:

• What are functional categories of need for the community?

• What are best practices?

• What tools are out there and recommended for each use case?

Further, there is separation between the developers of research software, and
those that deploy it as a workflow or service. This problem isn’t new, and in
fact we can look to cloud computing for inspiration. Although cloud computing
goes back to the 1960s (Foote 2017) and the term wasn’t coined until 1996
(Scality 2020), what we are specifically interested in is DevOps – a movement
that sought to bring together development of software and services (”Dev”) with
their deployment (operations, or ”Ops”) starting around 2007 (Atlassian, n.d.).
Interesting, Research Software Engineering is going through the same challenges,
and would benefit from the same kind of movement.

This white-paper introduces the concept of RSE-ops, or the intersection be-
tween Research Software Engineering and operations, which for research can
mean running workflows or services. We present a first effort at defining rel-
evant functional categories for the community, best practices, and the current
landscape of potential areas of growth. We hope this structure can provide a ba-
sis for inspiring community and initiative around collaborative and meaningful
work.

What is DevOps?
A definition of Research Software Engineering Operations (RSE-ops) can best
be derived by first explaining the philosophy behind DevOps (“What Is Devops,”
n.d.) is a term that refers to best practices to bridge development and operations.
It was coined in 2008 (“DevOps,” n.d.a), and has grown out of a web services
oriented model. The term has expanded to refer to other subsets of expertise in
this area such as cloud security operations, which is called ”DevSecOps,” adding
the ”Sec” for ”Security.” In DevOps, best practices are generally defined around:

1. continuous integration: automated integration of code changes into a
repository

2. continuous delivery: automated release of software in short cycles

3. monitoring and logging: tracking errors and system status in an auto-
mated way

4. communication and collaboration: interaction between team members and
optimally working together

2



5. ”infrastructure as code”: provisioning resources through simple text files

6. using micro-services: single function modules that can be assembled into
a more complex service

The above best practices are done for the purposes of speed and efficiency,
reliability, scale, and collaboration. It has been shown that teams that adopt
these practices can see improvements in productivity, efficiency, and quality
across the board (“DevOps: The Shift That Changed the World of Development”
2020). It is a culture because along with these best practices, it also alludes
to a way of thinking and working. Where there were barriers before between
development and operations teams, DevOps brought them down. You can grow
a community around these ideas, which is a powerful thing.

DevOps as the Driver of the Cloud

And surely the statistics are alarmingly good, as teams that practice DevOps
outperform their peers in number and speed of deployments, recovery from
downtime events, and employee ability to work on new things over tenuous
maintenance (Webteam, n.d.). Recognizing these gains and providing struc-
ture for collaboration, training, and projects was arguably just one of the goals
of the Cloud Native Computing Foundation (CNCF), which was founded in
2015 (Wikipedia contributors 2021b). Specifically, the primary stated reason
for foundation of CNCF was to foster community and support around container
technologies, which often are the core unit of automation and DevOps practices
(nishanil, n.d.)). A new term, ”cloud-native” was coined with this title, which
is heavily reliant on DevOps. DevOps practices are considered the fundamental
base of taking on a cloud-native approach, and another term, ”Cloud Native
DevOps” (“Cloud Native Devops,” n.d.) was even coined to specifically refer
to the application of DevOps practices to the cloud. Since the two are so in-
explicably intertwined, for the remainder of this paper, we will refer to them
interchangeably (Choice 2020).

What is Rse-ops?
The role of Research Software Engineer (RSE) has been emerging in the last
decade, and due to the hybrid nature of working environments across cloud, and
HPC, DevOps practices are logically being adopted. So if DevOps is the inter-
section of ”Developer” and ”Operations,” then how does this concept map to
this new space, where high performance computing, or more generally, Research
Software Engineering is at the forefront?

Inspired by DevOps, we can define a similar term for the Research Software
Engineering community to also inspire collaboration and champion best prac-
tices – RSE-ops. Research Software Engineers (RSEs) (“A Not-so-Brief History
of Research Software Engineers,” n.d.) are those individuals that write code
for scientific software, and more generally support researchers to use codes on
high performance computing systems, cloud services, and lab computers. Akin

3



to traditional Software Engineers at major tech companies, they are responsible
not just for software development, but also for deployment of analysis pipelines
and general services. It can be noted that we are not calling the new term
RseDevOps (dropping ”Dev”), and this is done intentionally as the term ”Re-
search Software Engineering” encompasses this ”Development” portion. RSE-
ops, then, appropriately refers to best practices for ensuring the same reliability,
scale, collaboration, and software engineering for research codes. We may not
always be running a scaled web service, but we might be running scaled jobs on
a manager, profiling performance, or testing software in development.

Thus, RSE-ops is the intersection of Research Software Engineering and Oper-
ations, and generally refers to best practices for development and operations of
scientific software. Arguably, the RSE community has just as much to gain by
building community and putting structure around these practices. It’s impor-
tant to note that while high performance computing (HPC) has traditionally
been a large part of scientific computation, researchers have extended their tools
to also use cloud services and other non-HPC tools, so HPC is only considered
a subset of Research Software Engineering and thus RSE-ops. Many modern
applications are web-based and extend beyond HPC, and so it is important to
consider this set as part of the larger scientific or research software engineering
universe. However, the dual need to run or deploy application across environ-
ments presents greater challenges for the community.

Comparison of RSE-ops vs. DevOps
The easiest way to start to map out the space of RSE-ops is to address a series
of questions about people, goals, and practices, and make a direct comparison
to DevOps. On a high level, RSE-ops has a stronger association with HPC,
while DevOps has a stronger association with the cloud, but the lines are blurry.
While early efforts of some of these clouds attempted to re-brand HPC (“Google
HPC,” n.d.), progress has been made to the point that the gap between cloud
and HPC is narrowing, and HPC centers are able to take advantage of cloud
technologies, and vice versa. There are still subtle differences, and ideally there
could be convergence to empower researchers to use software across different
platforms. For this reason, we think that making comparisons between the two
can be helpful to understand what practices are well established for RSE-ops,
and which require further development. Since there is a stronger association of
HPC with RSE-ops, in the discussion below we will often be comparing HPC
with cloud, however this does not say that there is always a strong dividing line
between the two. We will proceed in the following sections to ask questions of
each, speculate on best practices, and then summarize our findings in a table.

What are the goals of each?
Arguably, the goals of DevOps are to provide applications and services, typically
web-based. The goals of RSE-ops are to sometimes provide services for scientific

4



applications, but more-so to provide infrastructure and means to run, develop,
and distribute, scientific software. RSE-ops, then, is for research software and
services, while DevOps is typically for more widely available, persistent services
and corresponding software. This does not mean, however, that RSEs are never
involved with DevOps, nor that industry Software Engineers are never working
on research software.

Who is involved?
You will typically find individuals practicing RSE-ops at academic institutions,
national labs, and some private industry, or anywhere that high performance
computing is the primary means of compute. While some companies might
also use high performance computing, typically we likely find that larger com-
panies maintain their own internal container orchestration system (e.g., Google
uses Borg (“Large-Scale Cluster Management at Google with Borg,” n.d.), and
smaller companies pay to use cloud services that offer a similar set of tooling.
Likely this decision results from some cost-benefit analysis (Prabhakaran and J.
2018) that determines that one is more cost effective than the other. Whether
we look at Google Cloud (“DevOps,” n.d.b), Microsoft Azure (“DevOps,” n.d.c)
or Amazon Web Services (“What Is Devops,” n.d.), all of these cloud environ-
ments have a primary focus on distributed, scaled, and ”server-less” technologies.
We might call this cloud computing.

When we look closely at individuals involved, it tends to be the case that insti-
tutions with HPC have a combination of Linux Administrators, Support Staff,
Research Software Engineers, and Researchers. The Research Software Engi-
neers in particular play an interesting role because they can sit on the admin-
istrative side (with Linux Administrators and Support Staff), on the user side
(with Researchers) or somewhere in between. For this reason, they are essen-
tial staff for communication, or ensuring that the needs of the researchers are
known by those that run the resources. For tech companies, it’s likely the case
that a DevOps team or team of Support Reliability Engineers (SREs) is tasked
with managing software and services for the company. The SREs are primar-
ily concerned with how things should be done, and developing monitoring and
other support tools, while a DevOps teams is primarily concerned with doing it
(“Google - Site Reliability Engineering,” n.d.). The line gets blurry with respect
to titles, because a company can have some flexibility with respect to naming
these roles. However, it’s common to see titles like Software Engineer, DevOps
Engineer, SRE, or even Cloud Architect.

Accessibility for RSE-ops vs. DevOps
When we talk about accessibility in this space, we usually are referring to how a
user gets access to software and services. RSE-ops that is focused around HPC
usually means providing access to a research cluster, or typically hundreds to
thousands of nodes that are connected on a network. These clusters are opti-

5

https://en.wikipedia.org/wiki/Cloud_native_computing


mized for command line usage, meaning that users log in via a terminal, and
type commands in the prompt to run and monitor jobs, use software, or other-
wise interact with the cluster. While some centers have figured out options for
interactive notebooks that are accessible via a web interface (e.g., OnDemand
from the Ohio Supercomputing Center (“OnDemand,” n.d.) or JupyterHub
(“Jupyter Hub,” n.d.) for several national labs and academic institutions), typ-
ically, opening up resources to a web interface is not a well developed area.
Some might argue it’s an issue of not wanting to take risk of ”opening up” clus-
ters to a web interface, but realistically it could be called a skill gap. Web
technologies were greatly developed and adopted in the more commercial world,
and already overworked system admins don’t have the bandwidth to learn this
new skill to develop apps and what is required to secure them. As a buffer to
this missing service, many centers take a hybrid approach, meaning they make
cloud resources (from a vendor like Amazon Web Services (AWS) or Google
Cloud or Azure) available separately to groups that have need for these inter-
faces. This is often called a hybrid cloud (“What Is Hybrid Cloud? - Benefits
and Advantages of a Hybrid Cloud,” n.d.). However, as many centers embrace
container clusters like Kubernetes and OpenShift, there will soon be this kind
of cluster alongside an HPC cluster to run web and storage services asked for by
users. The early work to bring interfaces to high performance computing (“Web
Portals for High-Performance Computing: A Survey,” n.d.) will continue, and
following this development will be exciting in the coming years.

DevOps, or providing software and services in the cloud, might have an accessi-
bility advantage over RSE-ops in that the cloud is more likely to be accessible.
Theoretically, both HPC clusters and cloud resources can be accessed anywhere
with an internet connection, however large HPC centers are more likely to have
more stringent access requirements (e.g., logging in with a token as opposed to
OAuth2 in a browser), and are less likely to be accessible from the browser or
even a mobile phone. As a buffer against this, many app teams go out of their
way to provide web of container applications for distribution of their work.

Maintenance for RSE-ops vs. DevOps
RSE-ops on HPC means that a number of systems are running all the time. They
require a team to monitor, maintain, and take care of them. Cloud development
does not require the resource requester to think about maintenance of a system
any longer than the resource is needed. The resources are truly ”on demand.”
An instance, or small container cluster, might be requested when it’s needed,
and brought down and forgotten about when the work is done. This is a much
easier interaction for the user, as they can request what they need when they
need it. For a DevOps team, even if they are deploying container-based services,
they don’t need to worry about long term care or maintenance of servers.

From the user perspective (the researcher or end-user of a cloud service), both
HPC and cloud users don’t need to think about maintenance of the system.
The resources are available and can be requested. Thus, the stark difference is

6



that organizations with HPC typically host them on-premise, meaning that the
organization needs to pay for everything from people to maintain and operate
to the energy and cooling of the systems (Carlyle, Harrell, and Smith 2010).
On the other hand, although operational costs might be reduced using a cloud
resource, that cost can explode quickly depending on the kind and scale of cloud
resource that is needed (e.g., GPUs) (Li, Walls, and Guo 2020). There is much
knowledge in the HPC community about hidden costs from the cloud, and doing
comparisons between cloud and on-premise to find that on-premise can be half
the costs (Morgan and Hemsoth 2021; “Magellan: A Cloud Computing Testbed,”
n.d.). One of the challenges is that the costs are constantly changing. Despite
wanting to ultimately maximize profits, cloud providers typically provide cost
calculators to help with this, provide free-tiers and ”spot instances” at a lower
cost, high use discounts, and do not charge for services (e.g., instances) that are
turned off (Power and Weinman 2018).

While we cannot suggest universal best practices for maintenance, it is logical
that each institution needing resources do a cost benefit analysis to compare all
options that meet a set of community needs. It might be more logical for small
organizations (that perhaps cannot afford hosting and maintaining their own)
to use cloud resources, and for larger organizations that are constantly using
resources to host their own to save money.

Scientific Software for RSE-ops vs. DevOps
Installation of scientific software on HPC is a non-trivial task. To maximize
the efficiency of any piece of software and maximally utilize an underlying re-
source, it’s typically ideal to install it natively on the system, as opposed to a
containerized environment, which is arguably a foundation of modern DevOps
(“Containers Intro,” n.d.). However, studies are increasingly showing that con-
tainerization overhead is in fact low (Torrez, Randles, and Priedhorsky 2019),
and so the main distinguishing difference between using containers (”DevOps”)
and native install (traditional HPC) is ultimately the portability of the soft-
ware, and that HPC software must be built across a wide set of architectures.
RSE-ops is an interesting combination of these two realities, as containers are
widely used on HPC (“Singularity: Scientific Containers for Mobility of Com-
pute,” n.d.; “Charliecloud: Unprivileged Containers for User-Defined Software
Stacks in HPC,” n.d.; “Podman - : A Tool for Managing OCI Containers and
Pods” 2018) but the environments must also support having complex software
stacks alongside one another without conflicting dependencies. This means that
modules are common (“LMOD,” n.d.; “Environment Modules,” n.d.), and even
modules paired with containers (“Singularity Registry HPC,” n.d.) and users
are encouraged to ”BYOE” or ”bring your own environment” through container-
ization and local install in the case that the software can be installed in user
space. Otherwise, the software must be requested to be installed by the admin-
istrators of the cluster.

Thus, the strategy for deployment of scientific software usually comes under

7



the decision of the Linux administrators that manage the cluster. A piece of
software or new technology can only be embraced when it is asked for heavily
by users, and this ask is finally heard by the Linux administrators. While some
large centers have separate teams for system admins and user support staff,
smaller institutions tend to have a small group of people serving both roles. In
practice, these over-burdened staff cannot devote extra time to learning new
technologies and bringing more DevOps-like practices to their systems. Users of
the systems, although they can control external services, don’t have control to do
so either. This arguably is why DevOps practices have been slower to become
part of high performance computing culture. Given the complexity of using
software on HPC and the many different strategies for enabling users to run it,
some trade-off between portability and performance is required. Due to limited
permissions, users are not always empowered to install and run services like
they can in the cloud. Using cloud resources for development (and embracing
DevOps) gives users a lot more freedom because they typically do not need
to ask for permission. Arguably, there is a learning curve to this knowledge,
but also arguably, there is a learning curve for most new things that have the
potential to improve a daily workflow.

Best Practices for Scientific Software

We argue that it should not be entirely the burden of Linux administrators
to learn and adopt new practices, but rather they should have the support
of Research Software Engineers (RSEs). If Linux administrators have little
bandwidth left for testing, bench-marking, or otherwise working on research
software, RSEs can step in to both understand the workings of the underlying
system, but also the needs of the researchers or user-base. This is a a compelling
example that demonstrates the need for Research Software Engineers (RSEs),
who can not only better bridge the gap between the administrators and users of
a system, but also can focus on defining best practices in systems, behavior, and
software for using it. Adding this layer of best practices for automated builds,
testing, organization, and deployment of scientific software on HPC is what we
would define as RSE-ops.

Given the current ecosystem where RSEops best practices are not known, we
can make suggestions that best handle this dual need for modularity or con-
tainers and native installations. For installing scientific software, the package
managers spack and software build and installation framework easybuild or
module managers LMOD and environment modules (“LMOD,” n.d.; “Environ-
ment Modules,” n.d.) are most commonly used to install and manage scien-
tific software. Container technologies are also used to allow researchers to use
containerization (“Charliecloud: Unprivileged Containers for User-Defined Soft-
ware Stacks in HPC,” n.d.; “Podman - : A Tool for Managing OCI Containers
and Pods” 2018; “Singularity: Scientific Containers for Mobility of Compute,”
n.d.; “Shifter,” n.d.). Many of these tools allow flexibility to transition between
tools, such as spack producing files to build containers, and containers installing

8

https://github.com/spack/spack
https://docs.easybuild.io/en/latest/Introduction.html


software from spack (“Autamus,” n.d.). Package managers are a strong collab-
orative framework because they provide a structured way for people to work
together on software together.

Testing for RSE-ops vs. DevOps
There are arguably two kinds of testing - testing of systems, and testing of
scientific software.

Testing Scientific Software

There is a huge divide between testing scientific software and using it on the
shared resource. The reproducibility crisis that grew in the early 2010s (“Repli-
cation Crisis,” n.d.) did advocate for more use of version control (“GitHub,”
n.d.; “GitLab,” n.d.) for research software collaboration and development, and
the ease of integration of continuous integration (CI) external services for auto-
mated testing and deployment (“Travis-CI,” n.d.; “Circle-CI,” n.d.; “Jenkins,”
n.d.) made it more common for researchers to test and deploy their scientific
software. It became more common practice to create releases alongside code,
distribute them via packages managers, and even to provide containers that
could be pulled and used on a cluster. However, this test and deployment pro-
cess was notably separate from the HPC resources – it simply was not possible
to test codes on all of the possible semi-customized HPC environments on which
they might be run.

Understandably there would be security issues connecting an external service
to a shared resources, however this does not fully excuse the lack of innovation
in this area. It should be easier for a researcher to test and even deploy their
codes on or beside the resource that they ultimately will be used. While some
centers do have testing clusters, it’s not always easy to justify cycles on them
to be used just for testing. When software testing isn’t in the hands of the user,
testing the software stack might fall in the hands of the system administrator
or support staff of the HPC cluster, or even worse, nobody at all.

Ideally, best practices for testing will embrace the current approaches that de-
velopers are already using to test and deploy software, namely using services
like GitHub or GitLab and then creating releases, contributing install recipes
to package managers, and deploying containers for quick usability. Arguably,
what HPC centers might be able to bring to testing is scale. As tests need to be
run frequently and across many different architectures, the incentive structure is
arguably not there to maintain such a testing framework. Testing tools such as
Pavilion2 and ReFrame are intended for facility testing, but there is no conver-
gence on any kind of standard. Perhaps there should be, and this is something
that should be discussed by the HPC community. The need seems to be there,
as academic centers and national labs are slowly adopting their own strategies
for quickly being able to run tests from version control on a cluster resource,
, and likely these technologies will need to be shared with other institutions

9

https://github.com/hpc/pavilion2
https://github.com/eth-cscs/reframe


followed by convergence on a shared best practice.

Testing of Resources

Most centers do some kind of kernel and application bench-marking (“Measur-
ing High-Performance Computing with Real Applications,” n.d.), along with
testing of resources. For example, system administrators might use regression
testing, including testing file permissions and mounts, communication between
nodes and compatibility with the resource. For these regression tests, tools like
Pavilion, NHC and Interstate are popular.

Another continuous integration strategy is to focus on regression testing via tools
like ReFrame. Tools of this type try to test HPC systems alongside software
stacks directly on the resource, and typically separate from any web interface
or alongside the code. ReFrame and Pavilion are designed to test the machine,
and not the software. Ideally we would have a standard application testing
tool. Likely better ability to do testing will come from improved integration of
Continuous Integration (CI) services, discussed later in this paper.

Scaling for RSE-ops vs. DevOps
High performance computing was designed for scaling, but it must be done
intentionally. By way of job managers (“SLURM: Simple Linux Utility for Re-
source Management,” n.d.; “Flux Framework,” n.d.), Message Passing Interface
(MPI) programming (“MPI: A Message Passing Interface,” n.d.), and extreme
parallelism (“Inside HPC Future Technologies,” n.d.), it’s possible to scale a
task on an HPC cluster. Libraries like MPI are tested and can be used by HPC
experts to run parallel applications.

This is in contrast to some traditional DevOps tools that handle scaling or
scaled testing for the user, and typically have a strategy of deploying many
separate instances up or out instead of using a connected fabric (Reese, n.d.).
A prime example is the container orchestration tool Kubernetes (“Towards a
Framework for Monitoring and Analyzing High Performance Computing Envi-
ronments Using Kubernetes and Prometheus,” n.d.), which centers are starting
to deploy alongside traditional resources, possibly allowing RSE-ops to better
overlap with DevOps. Emerging tools like the Flux Framework (“Flux Frame-
work,” n.d.) are further closing the gap between traditional HPC managers and
container orchestration tools. The work remaining to be done is bridging the
gap between the developers of the tools and the user base. If it isn’t infinitely
easy for a user to launch a job, then arguably the frameworks and techniques
are not successful. There is a huge opportunity for development of RSE-ops
tools that can better teach and possibly automate this scaling. There is also
opportunity for cloud or DevOps practices to learn from traditional HPC and
think about providing similar options.

10

https://github.com/mej/nhc


Software Distribution for RSE-ops vs. DevOps
The end-goal of an HPC environment is to make software available to researchers.
This is abstractly similar to the ”end goal” of a cloud environment, which is
to make software available to users via services. For the cloud, this typically
means interactive web interfaces or services that are accessed from other web
or terminal clients via application programming interfaces (APIs). Since HPC
environments are typically running jobs that rely on system software and some
number of known aliases, the bulk majority of ”software distribution” for HPC
is probably command line interfaces. In this framework, the administrators
must provide an easy way to manage a collection of software, and make it
available to users, and app developers that maintain their own deployments
have to develop within that. At best, you can create modular structure and
exposure of different software via file-system organization (e.g., putting apps
in ‘/project‘) and using environment modules (“LMOD,” n.d.; “Environment
Modules,” n.d.; “Singularity Registry HPC,” n.d.) (e.g., ‘module load‘ only
what you need).

Users are somewhat empowered to install their own software, given that 1. they
have the file-system space to do so, and 2. installation does not require any
escalated permissions on the system. While this could mean a ”bring your own
environment” scenario via containers pulled from external registries, more likely
it means relying on package managers and module systems. Another solution
to this problem could be from better HPC container run-times.

Ideally, every module and package would have a suite of tests to ensure its
functionality, but in real world scenarios its likely that the software is tested
elsewhere (e.g., a CI service associated with the source code) and distributed to
the system for immediate usage.

Dependency Management for RSE-ops vs. DevOps
Dependency management refers to a set of practices used to manage software
versions. It is arguably a subtopic of software distribution. Every piece of sci-
entific software requires a specific set of versioned dependencies, and these de-
pendencies must co-exist alongside one another on a shared resource. This also
means that architectures must be maintained for possibly older dependencies
that require them. Tools have grown out of this need that allow for flexible man-
agement of dependencies and software, including easybuild (“EasyBuild,” n.d.),
spack (“Spack,” n.d.), and environment modules (“LMOD,” n.d.; “Environment
Modules,” n.d.). Development of these projects has also led to a powerful model
of development – bringing many people (administrators and users) together to
collaborate on the software. It’s not hard to read user surveys (“Spack User
Survey,” n.d.) and see that the open source model of development, when done
right, is successful. People are using the software, excited about it, and working
together to make it better. It also doesn’t hurt that some of these projects have
the backing of entire institutions and within- and inter-institutional funding

11



programs and resources.

These success stories give us a hint that working together on software, likely in
an open source, collaboration fashion, is a good model for successful distribu-
tion and improvement of the software. This does not imply that collaboration is
always, universally better (“The Mythical Man Month,” n.d.), but the authors
here believe that it’s an honorable if not idealistic goal to strive for. The chal-
lenge here, of course, is the extra work that it takes to seek out, interact with,
and inform contributors. Not everyone may agree that software can and should
be open and collaborative, and it may even depend on the kind of software in
question.

DevOps is different because you only install what you need, and when you need
it. It’s uncommon to require older versions of the same software to co-exist for a
service. Is there any kind of mapping of this freedom to research software engi-
neering? Yes, arguably containerization, primarily with container technologies
suitable for an HPC environment (“Singularity: Scientific Containers for Mobil-
ity of Compute,” n.d.; “Charliecloud: Unprivileged Containers for User-Defined
Software Stacks in HPC,” n.d.; “Shifter,” n.d.), has allowed for encapsulation
of an entire operating system and software stack that can be used in a portable
manner. However, as was noted in the description of testing, development and
deployment of these containers is unlikely to be on the resource itself. Ulti-
mately, if we can better use unprivileged container technologies, running builds
on clusters could be possible.

There also, until recently (“Singularity Registry HPC,” n.d.) has not been an
easy way for a cluster user or Linux administrator to install, manage, and pro-
vide containers. External registries that might be used (“Singularity Registry,”
n.d.; “OCI Distribution Spec,” n.d.) must exist alongside a resource and then
require an individual to explicitly pull a container binary. While this is better
than not having containers available at all, it creates redundancy of file-system
space, and requires the individual to be a stickler about container versions
pulled, good practices, and organization of said containers. This is not an easy
thing to do, and thus it’s hard to follow best practices (“Ten Simple Rules for
Writing Dockerfiles for Reproducible Data Science,” n.d.). Development of these
technologies, however, hinted at the idea that with some innovation, it could
be possible to empower users to better embrace more DevOps style practices of
developing, testing, and deploying research software (RSEops). It also hinted at
a more modular strategy for dependency management. Interestingly, containers
are used heavily by both cloud and HPC developers, but developing them and
ensuring security in their execution adds additional challenges.

Permissions for RSE-ops vs. DevOps
One of the biggest challenges of using an HPC system is likely permissions.
Although users can pull from container registries or install software from repos-
itories, they are not permitted to write to anywhere other than a standard

12



home or scratch space. While some users have project spaces that are shared
by multiple users, they can be a pain to manage. This is in contrast to a cloud
environment where it’s fairly easy to spin up a new instance and be root to do
whatever you please. This is unlikely to change, and will be a factor that needs
to be worked around.

This isn’t to say that root should be always required, or that allowing the user
to have it is best practice. Container technologies are increasingly going ”root-
less,” meaning they can operate fairly successfully in user space (“Charliecloud:
Unprivileged Containers for User-Defined Software Stacks in HPC,” n.d.; “Pod-
man - : A Tool for Managing OCI Containers and Pods” 2018; Priedhorsky et
al. 2021). Arguably, if the HPC community had been more involved with the
Open Container Initiative (OCI) earlier, ”rootless” containers would have been
a prominent point earlier and we’d be farther along now. There is clearly no
”fix” to give a user extended permissions, but rather software that can empower
them to deploy their user stacks without asking for permission. Along with
rootless container technologies, package managers like pip or conda can make it
easy to install software in user space.

Portability for RSE-ops vs DevOps
In DevOps workflows, portability is achieved by way of using entirely isolated
container environments. Although there still may be host or kernel dependen-
cies, it’s fairly trivial on the cloud to select a different architecture for this.
Running on HPC, however, is much more complex, as there is typically more
of a seamless environment with the host, or if not, the need to share libraries
between the container and host. Technologies such as MPI and infiniband, and
more generally, complex hardware and different kinds of performance optimiza-
tion setups mean that there is a trad-eoff between portability and performance
(Younge 2019). Even if a container does run, it could be that there are huge
losses in performance.

The current ”best practices” for this issue are generally to try binding libraries
from the host into the container, or to add needed libraries from the host to
the “LD_LIBRARY_PATH“ (Younge 2019). A better future, however, could
go in one of two directions. A more hard-coded approach would be to define a
standard set of metadata (e.g., labels) alongside the container, and have them
checked with a hook (“Opencontainers/Runtime-Spec Hooks,” n.d.) that would
do a quick comparison of labels with what is available on the host. More ideally,
there could be some kind of compatibility layer that is able to trace or discover
libraries in the container, compare to what is available on the host, and do some
kind of ABI compatibility solve to determine if the two are compatible. This
work is currently underway with the BUILD SI project at Lawrence Livermore
National Lab (“BUILD,” n.d.), and discussion of such a compatibility layer has
happened previously (Younge 2019).

13

https://pypi.org/project/pip/
https://docs.conda.io/en/latest/


Community standards for RSE-ops vs. DevOps
Cloud services provided by several different vendors have flourished for many
reasons, one of which is directly related to the community effort established
around open source and standards.

Specifically, the primary unit of operation, for DevOps, the container, has had
extensive collaborative work in a community and governance structure called the
Open Container Initiative (OCI) (“OpenContainers,” n.d.). The history behind
OCI reflects an organic, open source and community effort growing to meet the
needs of a changing industry landscape. Specifically, Docker (“Docker,” n.d.),
by way of being the first prominent, commercial container technology and hav-
ing developed its own container registry, Docker Hub (“Docker Hub,” n.d.), was
an early contributor to these standards. An early version of their RESTful API
to interact with container manifests and layers to push or pull containers was
adopted into the first distribution spec of OCI, along with an image, runtime,
and digest specifications. A container registry or technology is considered OCI
compliant if it meets the criteria of these standards. The OCI standards en-
sured that there was consistency between cloud providers, and that users could
translate between them without issue. Representatives from the major industry
leaders worked on the standards together, and eventually community members
for traditionally non-OCI compliant containers like Singularity joined the effort.

While having common standards is considered good practice in the RSE-ops
space, because the effort has been primarily industry driven, the needs of more
academic or HPC container technologies are not well represented. Academic and
high performance computing efforts are arguably siloed, meaning that there are
many libraries developed over time that are rooted in a particular lab or insti-
tution, and (with a few exceptions) groups do not work together. RSE-ops can
only be successful if this issue is addressed, meaning that groups from national
labs, academic institutions, and other communities that rely on HPC figure out
how to successfully work together, not just on software but on standards. A
good first step would be joining the industry effort to work on OCI standards
so that the needs of this different environment are represented in the commu-
nity, and an equivalent step would be to better collaborate on software projects,
training, and best practices. While collaboration does not always lead to the
best outcome (Wikipedia contributors 2021a), arguably it is inherit in software
development (Whitehead et al. 2010) and we have a lot to gain to work harder
at doing it well.

This might be more challenging than it seems at face value, because not ev-
ery organization has spare developers or staff to devote to this responsibility.
Discussing and maintaining standards can also be tireless, hard work.

Continuous Integration for RSE-ops vs. DevOps
Continuous integration is an established practice of continually testing and
building before deployment. It typically is focused around a version controlled

14



code-base (e.g., GitHub or GitLab (“GitHub,” n.d.; “GitLab,” n.d.)) and devel-
opers collaborate to review code, ensure that tests pass, and then merge into a
main branch. The goals are generally to ensure that when a piece or software or
service hits a production resource, there will be no bugs or errors. Artifacts can
be built and deployed on an event such as a merge, or for a versioned release.
The benefits of CI practices are obvious, allowing developers to more easily
collaborate on a code-base, and interact with production artifacts on resources
of interest. For DevOps this typically includes different container orchestra-
tion services, instances, or app deployments, and for RSE-ops this would likely
mean a local server or HPC cluster. The version control system also typically
provides an interface to make it easy to report and respond to bugs (typically
called issues) along with making suggestions to improve code (called pull or
merge requests) and tracking progress. This kind of workflow fits well into any
DevOps environment where change is a constant.

In the context of HPC, the diversity of resources that codes need to run on proves
to be a much larger challenge for CI. The most popular, public CI services
are not designed to interact with a batch system. It typically isn’t sufficient
to just test on a standard Linux x64, Mac, and Windows architecture, but
several architectures across different operating systems (primarily Linux) that
reflect the variety of the cluster nodes. The first challenge this presents is that
most standard, web-based CI services (e.g., GitHub actions runners, standard
GitLab runners, TravisCI, Jenkins, and CircleCI) don’t provide a rich variety of
architectures or graphical processing units (GPU), or when they do, they don’t
provide much control of when you get them.

For this reason, for research software we typically see the developers still develop
using these systems, but then are not able to test on all the systems that might
be needed. The challenge is thus getting any kind of modern web-based interface
linked up directly to a cluster to run tests. Work at national labs using GitLab
(Mendoza, n.d.; “Welcome to the ECP CI Documentation — ECP Continuous
Integration Documentation,” n.d.), and specifically having a locally deployed
Gitlab server with custom runners on various resources (“Administration —
ECP Continuous Integration Documentation,” n.d.) has been a way to unite
these two worlds. Managing such an integration requires thinking about how to
manage resources, user accounts, time allocations, and machine access. Another
challenge is that there is is no standard workflow language for CI, and perhaps
there should be.

Continuous Deployment for RSE-ops vs. DevOps
Continuous deployment is the step after continuous integration finishes, namely
the deployment or archive of build artifacts for use in production. For DevOps,
this typically means pushing containers to a registry where they can be pulled
to some production or testing environment.

On HPC the software is optimally installed on bare metal instead of relying

15



on containers or some kind of container orchestrator. For HPC it’s also up to
workload managers (“SLURM: Simple Linux Utility for Resource Management,”
n.d.; “Flux Framework,” n.d.) to run the software. These resources are also
typically protected, and not easily accessible from a web interface.

For RSE-ops on HPC, a similar approach using containers could be adopted,
however due to the private nature of software it could be that registries and
services are internal. A self-deployed CI service (e.g., Jenkins or GitLab (“Jenk-
ins,” n.d.; “GitLab,” n.d.)) that has access to cluster resources could either
deploy an artifact or use SSH to execute a command to do similar. A container
could be pushed to an open source or internal registry. One important question
that results from this is how to control access and security. If a user builds a
container in CI, how is it assessed or scanned to be safe to deploy? There is
also one additional level of complexity with providing containers with different
architectures to run optimally on the system. Finally, build caches (meaning
binary packages) would be an equally good solution, or in fact a supplement.
Build caches are ideal for reuse, and containers for reproducibility.

Monitoring for RSE-ops vs. DevOps
Monitoring for both RSE-ops and DevOps can generally be referred to as looking
at metrics and logs to assess performance of systems and software. It can even
be extended to talking about performance testing, provenance and reproducibil-
ity of scientific workflows, and data organization. In both spaces, administrators
of resources typically choose strategies to monitor their systems. In cloud de-
velopment, monitoring services might be more easily integrated into different
services, and in HPC some more traditionally DevOps tools like Kubernetes,
Grafana, and Prometheus are starting to be used (“Towards a Framework for
Monitoring and Analyzing High Performance Computing Environments Using
Kubernetes and Prometheus,” n.d.). However, best practices for monitoring
have not been established, nor have best practices for running workflows and
storing provenance.

Security for RSE-ops vs. DevOps
Security is of utmost importance for HPC, and consequently the environment is
much more restricted for the average user than if the same user was using the
cloud. Specifically, instead of a single user having root, there are potentially
thousands of users sharing the same systems, and thus the systems are struc-
tured to ensure scoped permissions. The user cannot write to anywhere in the
system other than a home or work-space, and the user largely does not have con-
trol over networking, or further customizing a system provided resource. These
points are related to the permissions section.

Within DevOps, a community has formed around best practices for security
called ”DevSecOps” (“What Is DevSecOps?” n.d.). Although there is more
freedom in the cloud, multi-tenant projects still require that different teams

16



maintain unique namespaces, and that services are deployed to avoid any kind
of security breach or intellectual property violation. Thus, DevSecOps (akin to
DevOps) aims to automate having security checks for each step in the life-cycle
of a cloud service. DevSecOps also is a community, and strives to increase
general awareness about security best practices. This is a different approach
than traditional security checks, which might have done an evaluation of a piece
of software before deploying it to production, and likely this is still considered
the best practice for HPC. However, ideally there could be an equivalent move-
ment to focus and work on security best practices, culture, and community for
RSE-ops.

For both these groups, containers present a unique challenge, as it seems almost
impossible to keep track of every container that a user might bring to a cluster
or cloud environment. At best there is security scanning in the registry (and
the user of the container takes notice) and the container technology is designed
in a way to not allow any escalation of the user to a root user (e.g., Singularity
(“Singularity: Scientific Containers for Mobility of Compute,” n.d.), or Podman
(“Podman - : A Tool for Managing OCI Containers and Pods” 2018)), unlike
cloud container run-times (e.g., Docker (“Docker,” n.d.)).

Description DevOps RSE-ops
Goals Commercial software and services Research software development, use, and distribution
People Industry software engineers Research software engineers
Accessibility Freedom to access from browsers, and anywhere with an internet connection More secured access from possibly a limited set of internet connections
Maintenance Request, use, and throw away when done Constantly running resources that require maintenance and monitoring
Staffing No staffing required Requires Linux administrators and user support specialists
Scientific Software Software and services can be modular, and optimized for the application or service. Requires complex software stacks with conflicting dependencies and variable architectures to co-exist on a resource.
Scaling Scaling is typically automated. Many options for scaling, and manual practices make it challenging for a cluster user or developer to know best practices.
Software Distribution Complete freedom to use any software distribution or package manager. Software is likely to come from external resources to be installed via a package manager or module system for the user.
Permissions Complete freedom Logically, only administrators can have elevated privileges to install software or otherwise interact with resources.
Accessibility Browser and command line, even from mobile Accessibility is primarily by way of the command line, with limited access to interactive notebooks. This is a huge potential area for development for rse-ops
Testing Automated testing and deployment alongside and integrated with cloud resources Automated testing typically separate from the HPC resources
Dependency Management Easy to use bleeding edge software, and install only what you need when you need it A hodge-podge of dependencies (versions and for different architectures) must co-exist on the resource
Community Standards Significant time and effort to establish standards for containers Traditionally not as involved in the same efforts
Continuous Integration Well established practices and integration of version control with build, test, deploy Limited interaction with traditional CI services, local deployment and custom runners is promising
Continuous Deployment Comes down to pushing containers to registries for production systems No best practice established, but can interact with resources in some situations to deploy
Monitoring Monitoring is well integrated into services Must ”roll your own” monitoring, but DevOps services (e.g., Grafana, Prometheus) are used sometimes.
Security DevSecOps is leading the way to make security an automated part of the development lifecycle Security is unlikely to be automated, and a greater challenge with many users sharing the same space.

Why can’t RSE-ops follow DevOps?
The biggest factor that originally seemed to separate RSE-ops with DevOps
was HPC system complexity, and inability to change quickly. However, clouds
now are also increasing in complexity, not just in services offered, but machines

17



(and general details) relevant to each service. A second factor is availability
of resources. On HPC, ”on-demand” usually means waiting in a queue for
your turn. This means that software development on HPC is a slow task, and
typically the software is not developed alongside the system, but perhaps only
used or tested there after the fact.

For working in the cloud, we operate on the basis of being able to make services
and systems modular. Any piece of software can be installed when needed on
a cloud resource, whereas the process is more complicated for HPC, primarily
needing to be done by someone with adequate permissions, and in a way that the
software can exist alongside other software and be accessed in a particular way
(loaded as a module, as a container, etc.). On the cloud a piece of software can be
run exactly with a container base that is needed, and there is little or no concern
for dependency with other bases. The two biggest hardware dependencies that
containers have, arguably host MPI and GPU, are also hugely important factors
when figuring out compatibility.

There is also little concern with using updated systems or software – unlike HPC
that needs to always support legacy systems, deployment on the cloud is more
”use and throw away” to easily support whatever system is desired. As long as
services are written in portable languages and don’t require high performance
with respect to node configuration, they can be run anywhere, and people are
agnostic to the details.

This allows developers to work on the bleeding edge and perhaps only be con-
cerned with supported the latest top systems that might want to run the soft-
ware (e.g., Mac, Linux, and Windows latest). Cloud DevOps also allows for
scaling and deploying on demand resources with the only constraint being cost.
For RSE-ops on HPC, the scaling is limited to the cluster, along with the number
of people using it.

A major helper to this current landscape would be well-established tools to allow
for ease of testing for an HPC user. Whether this means testing on a node
allocated for testing on the cluster, or a separate build system that mimics the
cluster environment, being able to trigger builds and tests alongside a code base
with a CI pipeline would greatly improve the software development life-cycle on
HPC. If such a system existed, and if it were easy for RSE software developers to
develop, test, and deploy their own software, system administrators could better
focus on improving or enhancing the systems instead of managing software for
them. We could even imagine going a step further and having a more automated
ability to use software for the average user. For example, if a workflow system
is better integrated into the cluster, akin to how an RSE developer could push
and trigger builds and tests, an HPC user could push a workflow to trigger
running a test job, and upon success, if desired or needed, running it at scale.
It would be amazing if we could eliminate the need to ssh in to a log in node,
learn how to use a job manager, and otherwise interact with HPC. To the user,
if the cluster could be exposed as a service with an easy interface to monitor
jobs and job submission could be integrated with the user’s workflow, the speed

18



of development and analysis would greatly increase.

Obviously, the greatest challenges to making the above a reality come down to
security and centers being able to support more modern authentication systems.
Exposing any cluster resource to be accessible via continuous integration or
version control triggers requires connecting the resource to external services,
which always is a risk, but there are well developed authentication frameworks
for that.

Moving data from some external storage to a cluster resource to be analyzed
is another challenge. A tiny step of progress is the ability to link a traditional
HPC single sign on (SSO) scheme (e.g., LDAP or Kerberos) to a version control
service (e.g., GitLab or GitHub) to allow for role based access, but it’s not clear
how often this is done or if it’s a good direction.

Informing one another: metadata for containers
Containers are an essential tool for RSE-ops, as they are involved with continu-
ous integration, software deployment and reproducibility, community standards,
and testing. As an exercise to find opportunities for those in the DevOps and
Rse-ops spaces to work together on tools or standards, we can look more closely
at container technologies that are used in both spaces, and identify several use
cases where this ample room for improvement and collaboration. A particular
topic of interest for this exercise it looking at container metadata. There are cur-
rently no tools, standards, or best practices for definition and use of container
metadata, and there are several use cases where it is badly needed. Ideally we
could define a set of metadata that can solve use cases in both, and then tools
and best practices around that. As was started with the containers working
group here are several use cases that can be mapped to HPC or cloud with
metadata that are needed for both. This kind of exercise can be extended to
talk about more areas than just container technologies.

Use Case: Architecture and Host-aware Pulls
A user pulling a container from a registry to a host, regardless if we are on
HPC or a cloud resource, should be able to get the best matching one. The
container already exists, so we could imagine some hook before the pull looking
at metadata on the host, and then sending it with a request for a specific
container. This idea is similar to one discussed in (Younge 2019). In terms of
metadata we would likely need:

• Image architecture (to match to host) or best available for host per arch-
spec

• Hardware (and namely software compatibility with it)

• Memory / resource needs (perhaps we can be more specific here) (an
example that requires ”big” nodes)

19

https://supercontainers.github.io/containers-wg
https://supercontainers.github.io/containers-wg
https://github.com/spack/spack/blob/develop/share/spack/gitlab/cloud_pipelines/stacks/e4s/spack.yaml#L347-L364


• Software-level compatibility information (e.g., target CUDA driver version,
MPI variant and version)

• ABI info

For the above, it could be that there is a simple metadata matching algorithm,
or something as complex as an actual solve. For this to work, the process of
building images for different architectures needs to be made easier. A cluster
would need to be able to create a listing of architectures present, and then issue
those as requests to a build service or registry.

This use case is different from using an HPC scheduler one because the pull
is happening from a node where it is intended to be run. Although the sched-
uler could also be given a container unique resource identifier to pull and then
match it accordingly, the scheduler likely is given an unknown (already pulled)
container, and needs to match it to a node.

Use Case: Container Discoverability
A user might want to quickly find a container that most closely matches what
they need. This likely would be some kind of database that indexes metadata
about containers, and provides it in a searchable interface. In terms of metadata
this use case would likely need:

• Software and libraries

• Domain-specific labels

• ABI compatibility about the container (to assess compatibility with the
host)

• Image architecture

Use Case: Dynamic Builds
A user on a resource should be able to navigate to a web interface, select a set of
software or features desired for a container, and then have it built for use. This
use case is slightly different because we are not searching for existing containers,
but building custom ones. In terms of metadata, this use case would require:

• Operating systems

• Compatible package managers / software

Optimization
Several user groups are interested in being able to collect metrics about software
and services. If containers could provide some of these metrics, it would help
their use case. In terms of metadata this use case would likely need:

• System and architecture details for where it was built

20



• System and architecture details for where it has been successfully
tested/run

For a limited scope of containers, such as those designed completely from a pack-
age manager, some of this metadata could be included automatically. However,
most containers ”in the wild” won’t have been developed from a single package
manager, and there should still be a way to discover these metrics.

Use Case: Scheduler
A scheduler that is handed an unknown container should be able to quickly sniff
it and be able to best match it to a node. Akin to Kubernetes, we would want
to be able to match labels of nodes with labels of containers to be run there.
For this use case, we would also need:

• Image architecture

• Hardware (e.g., ABI)

• Memory / resource needs

A Harder Challenge is Changing Culture
If DevOps is a culture and community that emphasizes collaboration between
”operations” and ”development,” would RSE-ops be the same idea but focusing
on the collaboration between HPC system administrators, and research software
engineers? And instead of automating services, would we want to automate
scientific workflows, only with small services when they are needed? Some might
argue that it isn’t about the tools per-say, but the practices and culture around
them. So it simply is not enough to just create a new tool or state a practice
without asking how it fits into current culture. From the other side of the
coin, having an open mind is also important. If any member of an organization
doesn’t have a mindset that is open and amenable to change and innovation,
it’s going to be hard to practice. This might be especially challenging in the
HPC/RSE community where stability and consistency (arguably the opposite of
change) is already part of the culture. A strategy to go about inspiring change
might be to start with a current practice, and ask the questions:

• ”How do we automate this?”

• ”How do teams X and Y work together, what are the common goals and
units of operation?”

A lot of RSE-ops seems to come down to automation, which is why it’s a good
question to start with. Another good suggestion is to consider RSE-ops from the
level of the system. Each of these components can be discussed in terms of who
works on it, how that is collaborative, and how it could be more collaborative
or automated.

21



• booting

• web servers and hosting static and dynamic sites

• process management

• ssh

• file systems and volumes

• system logging, monitoring, troubleshooting

• protocols like SSL, TLS, TCP, UDP, SFTP, etc.

• managing services (e.g., initd, systemd)

• load balancing

• breaking things and troubleshooting (this might be good for practice or
learning to work together)

Another interesting question is how could this stack span HPC and cloud? How
can we find some convergence? If we can create a map of cloud services, we
could then try to map that to HPC. We ultimately want a layout of the land
for what constitutes the ”infrastructure” of HPC and what is missing or could
be improved. Each node in this map would then be linked to documentation in
a consistent, well-branded way.

Mapping the Space
During this exercise, we can see that there are two different communities that
come together to form what we might call the HPC community, and you might
guess this comes down to users (researchers, research software engineers) and
admins (system administrators and also research software engineers). You’ll
notice that research software engineers can be part of both groups, which is
why the profession has been helpful to shed light on the needs of the user base.
The two groups include:

• users

• admins

And the two groups can view the same ecosystem in very different ways. The
two groups can also have some overlap in shared value for software or services,
however not everything has perfect overlap. In many cases, even the user com-
munity is broken into smaller user communities based on domain of science, or
preferred tools. For example, a physics group at a national lab might use a lot of
MPI or Fortran codes, while a neuroimaging lab’s bread and butter is launching
SLURM jobs with a container technology. This realization requires us to make
a distinction between the two groups, and clarify that RSE-ops does not include
domain or scientific libraries, but all of the testing, infrastructure, and support

22



tools around them. We are making an effort to map out this space, which can
be viewed at https://vsoch.github.io/rse-ops/. We are also clearly noting that
RSE-ops extends beyond HPC (but includes it).

Summary of Opportunities
The following areas of RSE-ops are not well developed, and we have opportunity
to build or seek out tools to fill the space.

• Web Applications: Development framework for interactive (browser
based) applications for HPC. This relies on being able to ensure secure
access in a browser.

• Automated Scaling: Being able to scale a job, task, or service without
thinking about it.

• On Demand Resources: An HPC user should theoretically be able to
request a custom resource, and ”throw it away” when done. For HPC
an administrative team would still need to monitor and maintain the re-
sources, but to the user there could be a more interactive, customized ex-
perience. E.g., ”I want an instance with this amount of memory, storage,
and with this software installed. And I want to customize and request it
in a web interface.” While traditional batch systems can support this kind
of request, what they aren’t designed for is on-demand computing. Batch
systems expect jobs that take a long time, and they aren’t responsive.

• Continuous Integration: Application developers on HPC should have
easy access to run tests on clusters, which can be difficult to do. Some
national labs have workflows that integrate HPC with CI (e.g., GitLab)
and other academic institutions are nowhere near this kind of integration.

• Dependency Management: With spack, easybuild, and containers, we
are doing fairly well. However, constant training and education about
these projects is still a challenge. Along with dependency management
we also need rich metadata that is paired with distributed binaries and
containers.

• Community Standards: Have one or more representatives join the OCI
community, along with other standards bodies that work on ideas relevant
to our communities.

• Continuous Integration: Can there be a CI resource or service provided
that can better mock HPC environments? Can there be a standard CI
service?

• Continuous Deployment: Why can’t traditional tools to produce soft-
ware be hooked up with the CI service?

23

https://vsoch.github.io/rse-ops/


• Monitoring: better integration of traditional workflow/job management
tools with monitoring, and establishing best practices.

References
“A Brief History of High-Performance Computing (HPC) - XSEDE Home -

XSEDE Wiki.” n.d. https://confluence.xsede.org/pages/viewpage.acti
on?pageId=1677620.

“A Not-so-Brief History of Research Software Engineers.” n.d. https://www.
software.ac.uk/blog/2016-08-17-not-so-brief-history-research-software-
engineers-0.

“Administration — ECP Continuous Integration Documentation.” n.d. https:
//ecp-ci.gitlab.io/docs/admin.html.

Atlassian. n.d. “History of DevOps.” https://www.atlassian.com/devops/what-
is-devops/history-of-devops.

“Autamus.” n.d. https://autamus.io/.
“BUILD.” n.d. https://computing.llnl.gov/projects/build.
Carlyle, Adam G, Stephen L Harrell, and Preston M Smith. 2010. “Cost-

Effective HPC: The Community or the Cloud?” In 2010 IEEE Second Inter-
national Conference on Cloud Computing Technology and Science, 169–76.

“Challenging the Barriers to High Performance Computing in the Cloud -
HPCwire.” 2020. https://www.hpcwire.com/solution_content/aws/man
ufacturing-engineering-aws/challenging-the-barriers-to-high-performance-
computing-in-the-cloud/.

“Charliecloud: Unprivileged Containers for User-Defined Software Stacks in
HPC.” n.d. https://dl.acm.org/doi/10.1145/3126908.3126925.

Choice, Editor’s. 2020. “How DevOps Is Integral to a Cloud-Native Strategy.”
https://www.information-age.com/how-devops-integral-cloud-native-
strategy-123488706/.

“Circle-CI.” n.d. https://circleci.com.
“Cloud Native Devops.” n.d. https://www.oreilly.com/library/view/cloud-

native-devops/9781492040750/ch01.html.
“Containers Intro.” n.d. https://www.oreilly.com/library/view/cloud-native-

devops/9781492040750/ch01.html#containers-intro.
“DevOps.” n.d.b. https://cloud.google.com/devops.
———. n.d.c. https://azure.microsoft.com/en-us/services/devops/.
———. n.d.a. https://dl.acm.org/doi/10.1109/MS.2016.68.
“DevOps: The Shift That Changed the World of Development.” 2020. https:

//www.narwalinc.com/blog/devops-the-shift-that-changed-the-world-of-
development/.

“Docker.” n.d. https://docker.io.
“Docker Hub.” n.d. https://hub.docker.com/.
“EasyBuild.” n.d. https://easybuild.io/.
“Environment Modules.” n.d. https://modules.readthedocs.io/en/latest/.
“Flux Framework.” n.d. https://flux-framework.org/.

24

https://confluence.xsede.org/pages/viewpage.action?pageId=1677620
https://confluence.xsede.org/pages/viewpage.action?pageId=1677620
https://www.software.ac.uk/blog/2016-08-17-not-so-brief-history-research-software-engineers-0
https://www.software.ac.uk/blog/2016-08-17-not-so-brief-history-research-software-engineers-0
https://www.software.ac.uk/blog/2016-08-17-not-so-brief-history-research-software-engineers-0
https://ecp-ci.gitlab.io/docs/admin.html
https://ecp-ci.gitlab.io/docs/admin.html
https://www.atlassian.com/devops/what-is-devops/history-of-devops
https://www.atlassian.com/devops/what-is-devops/history-of-devops
https://autamus.io/
https://computing.llnl.gov/projects/build
https://www.hpcwire.com/solution_content/aws/manufacturing-engineering-aws/challenging-the-barriers-to-high-performance-computing-in-the-cloud/
https://www.hpcwire.com/solution_content/aws/manufacturing-engineering-aws/challenging-the-barriers-to-high-performance-computing-in-the-cloud/
https://www.hpcwire.com/solution_content/aws/manufacturing-engineering-aws/challenging-the-barriers-to-high-performance-computing-in-the-cloud/
https://dl.acm.org/doi/10.1145/3126908.3126925
https://www.information-age.com/how-devops-integral-cloud-native-strategy-123488706/
https://www.information-age.com/how-devops-integral-cloud-native-strategy-123488706/
https://circleci.com
https://www.oreilly.com/library/view/cloud-native-devops/9781492040750/ch01.html
https://www.oreilly.com/library/view/cloud-native-devops/9781492040750/ch01.html
https://www.oreilly.com/library/view/cloud-native-devops/9781492040750/ch01.html#containers-intro
https://www.oreilly.com/library/view/cloud-native-devops/9781492040750/ch01.html#containers-intro
https://cloud.google.com/devops
https://azure.microsoft.com/en-us/services/devops/
https://dl.acm.org/doi/10.1109/MS.2016.68
https://www.narwalinc.com/blog/devops-the-shift-that-changed-the-world-of-development/
https://www.narwalinc.com/blog/devops-the-shift-that-changed-the-world-of-development/
https://www.narwalinc.com/blog/devops-the-shift-that-changed-the-world-of-development/
https://docker.io
https://hub.docker.com/
https://easybuild.io/
https://modules.readthedocs.io/en/latest/
https://flux-framework.org/


Foote, Keith D. 2017. “A Brief History of Cloud Computing - DATAVERSITY.”
https://www.dataversity.net/brief-history-cloud-computing/.

“GitHub.” n.d. https://github.com.
“GitLab.” n.d. https://gitlab.com.
“Google - Site Reliability Engineering.” n.d. https://sre.google/sre-book/intro

duction/.
“Google HPC.” n.d. https://cloud.google.com/solutions/hpc.
Guidi, Giulia, Marquita Ellis, Aydin Buluc, Katherine Yelick, and David Culler.

2020. “10 Years Later: Cloud Computing Is Closing the Performance Gap,”
November. https://arxiv.org/abs/2011.00656.

“Inside HPC Future Technologies.” n.d. https://insidehpc.com/2017/03/future-
technologies-rise-hpc/.

“Jenkins.” n.d. https://jenkins.io.
“Jupyter Hub.” n.d. https://jupyter.org/hub.
“Large-Scale Cluster Management at Google with Borg.” n.d. https://research

.google/pubs/pub43438/.
Li, Shijian, Robert J Walls, and Tian Guo. 2020. “Characterizing and Modeling

Distributed Training with Transient Cloud GPU Servers.” In 2020 IEEE
40th International Conference on Distributed Computing Systems (ICDCS),
943–53.

“LMOD.” n.d. https://lmod.readthedocs.io/en/latest/.
“Magellan: A Cloud Computing Testbed.” n.d. https://www.nersc.gov/resear

ch-and-development/archive/magellan/.
“Measuring High-Performance Computing with Real Applications.” n.d. https:

//engineering.purdue.edu/paramnt/publications/SBA+08.pdf.
Mendoza, Thomas. n.d. “LC User Meeting.” https://hpc.llnl.gov/sites/default

/files/GitLab-Status-LCuserMtg-202012-Mendoza.pdf.
Morgan, Timothy Prickett, and Nicole Hemsoth. 2021. “The Many Other High

Costs Cloud Users Pay.” https://www.nextplatform.com/2021/06/25/the-
many-other-high-costs-cloud-users-pay/.

“MPI: A Message Passing Interface.” n.d. https://ieeexplore.ieee.org/document
/1263546.

nishanil. n.d. “Containers as the Foundation for DevOps Collaboration.” https:
//docs.microsoft.com/en-us/dotnet/architecture/containerized-lifecycle/do
cker-application-lifecycle/containers-foundation-for-devops-collaboration.

“OCI Distribution Spec.” n.d. https://github.com/opencontainers/distribution-
spec.

“OnDemand.” n.d. https://www.osc.edu/resources/online_portals/ondemand.
“OpenContainers.” n.d. https://opencontainers.org.
“Opencontainers/Runtime-Spec Hooks.” n.d. Github.
“Podman - : A Tool for Managing OCI Containers and Pods.” 2018.
Power, Brad, and Joe Weinman. 2018. “Revenue Growth Is the Primary Benefit

of the Cloud.” IEEE Cloud Computing 5 (4): 89–94.
Prabhakaran, Akhila, and Lakshmi J. 2018. “Cost-Benefit Analysis of Public

Clouds for Offloading In-House HPC Jobs.” In 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), 57–64.

25

https://www.dataversity.net/brief-history-cloud-computing/
https://github.com
https://gitlab.com
https://sre.google/sre-book/introduction/
https://sre.google/sre-book/introduction/
https://cloud.google.com/solutions/hpc
https://arxiv.org/abs/2011.00656
https://insidehpc.com/2017/03/future-technologies-rise-hpc/
https://insidehpc.com/2017/03/future-technologies-rise-hpc/
https://jenkins.io
https://jupyter.org/hub
https://research.google/pubs/pub43438/
https://research.google/pubs/pub43438/
https://lmod.readthedocs.io/en/latest/
https://www.nersc.gov/research-and-development/archive/magellan/
https://www.nersc.gov/research-and-development/archive/magellan/
https://engineering.purdue.edu/paramnt/publications/SBA+08.pdf
https://engineering.purdue.edu/paramnt/publications/SBA+08.pdf
https://hpc.llnl.gov/sites/default/files/GitLab-Status-LCuserMtg-202012-Mendoza.pdf
https://hpc.llnl.gov/sites/default/files/GitLab-Status-LCuserMtg-202012-Mendoza.pdf
https://www.nextplatform.com/2021/06/25/the-many-other-high-costs-cloud-users-pay/
https://www.nextplatform.com/2021/06/25/the-many-other-high-costs-cloud-users-pay/
https://ieeexplore.ieee.org/document/1263546
https://ieeexplore.ieee.org/document/1263546
https://docs.microsoft.com/en-us/dotnet/architecture/containerized-lifecycle/docker-application-lifecycle/containers-foundation-for-devops-collaboration
https://docs.microsoft.com/en-us/dotnet/architecture/containerized-lifecycle/docker-application-lifecycle/containers-foundation-for-devops-collaboration
https://docs.microsoft.com/en-us/dotnet/architecture/containerized-lifecycle/docker-application-lifecycle/containers-foundation-for-devops-collaboration
https://github.com/opencontainers/distribution-spec
https://github.com/opencontainers/distribution-spec
https://www.osc.edu/resources/online_portals/ondemand
https://opencontainers.org


Priedhorsky, Reid, R Shane Canon, Timothy Randles, and Andrew J Younge.
2021. “Minimizing Privilege for Building HPC Containers,” April. https:
//arxiv.org/abs/2104.07508.

Reese, George. n.d. Cloud Application Architectures. O’Reilly Media, Inc.
“Replication Crisis.” n.d. https://en.wikipedia.org/wiki/Replication_crisis.
Scality. 2020. “The History of Cloud Computing - SOLVED.” https://www.sc

ality.com/solved/the-history-of-cloud-computing/.
“Shifter.” n.d. https://github.com/NERSC/shifter.
“Singularity Registry.” n.d. https://joss.theoj.org/papers/10.21105/joss.00426.
“Singularity Registry HPC.” n.d. https://singularity-hpc.readthedocs.io.
“Singularity: Scientific Containers for Mobility of Compute.” n.d. https://jour

nals.plos.org/plosone/article?id=10.1371/journal.pone.0177459.
“SLURM: Simple Linux Utility for Resource Management.” n.d. https://link.s

pringer.com/chapter/10.1007/10968987_3.
“Spack.” n.d. https://spack.io/.
“Spack User Survey.” n.d. https://spack.io/spack-user-survey-2020/.
“Ten Simple Rules for Writing Dockerfiles for Reproducible Data Science.” n.d.

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.100
8316.

“The Mythical Man Month.” n.d.
Torrez, Alfred, Timothy Randles, and Reid Priedhorsky. 2019. “HPC Container

Runtimes Have Minimal or No Performance Impact.” In 2019 IEEE/ACM
International Workshop on Containers and New Orchestration Paradigms
for Isolated Environments in HPC (CANOPIE-HPC), 37–42.

“Towards a Framework for Monitoring and Analyzing High Performance Com-
puting Environments Using Kubernetes and Prometheus.” n.d. https:
//ieeexplore.ieee.org/document/9060302.

“Travis-CI.” n.d. https://travis-ci.org.
“Web Portals for High-Performance Computing: A Survey.” n.d. https://dl.a

cm.org/doi/pdf/10.1145/3197385.
Webteam, Puppet. n.d. “2016 State of DevOps Report.” https://puppet.com

/resources/report/2016-state-devops-report/.
“Welcome to the ECP CI Documentation — ECP Continuous Integration Doc-

umentation.” n.d. https://ecp-ci.gitlab.io/index.html.
“What Is Devops.” n.d. https://aws.amazon.com/devops/what-is-devops/.
“What Is DevSecOps?” n.d. https://www.redhat.com/en/topics/devops/what-

is-devsecops.
“What Is Hybrid Cloud? - Benefits and Advantages of a Hybrid Cloud.” n.d.

https://www.netapp.com/hybrid-cloud/what-is-hybrid-cloud/.
Whitehead, Jim, Ivan Mistrı́k, John Grundy, and André van der Hoek. 2010.

“Collaborative Software Engineering: Concepts and Techniques.” In Collab-
orative Software Engineering, edited by Ivan Mistrı́k, John Grundy, André
Hoek, and Jim Whitehead, 1–30. Berlin, Heidelberg: Springer Berlin Hei-
delberg.

Wikipedia contributors. 2021a. “The Mythical Man-Month.” https://en.wikip
edia.org/w/index.php?title=The_Mythical_Man-Month&oldid=1025350

26

https://arxiv.org/abs/2104.07508
https://arxiv.org/abs/2104.07508
https://en.wikipedia.org/wiki/Replication_crisis
https://www.scality.com/solved/the-history-of-cloud-computing/
https://www.scality.com/solved/the-history-of-cloud-computing/
https://github.com/NERSC/shifter
https://joss.theoj.org/papers/10.21105/joss.00426
https://singularity-hpc.readthedocs.io
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177459
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177459
https://link.springer.com/chapter/10.1007/10968987_3
https://link.springer.com/chapter/10.1007/10968987_3
https://spack.io/
https://spack.io/spack-user-survey-2020/
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008316
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008316
https://ieeexplore.ieee.org/document/9060302
https://ieeexplore.ieee.org/document/9060302
https://travis-ci.org
https://dl.acm.org/doi/pdf/10.1145/3197385
https://dl.acm.org/doi/pdf/10.1145/3197385
https://puppet.com/resources/report/2016-state-devops-report/
https://puppet.com/resources/report/2016-state-devops-report/
https://ecp-ci.gitlab.io/index.html
https://aws.amazon.com/devops/what-is-devops/
https://www.redhat.com/en/topics/devops/what-is-devsecops
https://www.redhat.com/en/topics/devops/what-is-devsecops
https://www.netapp.com/hybrid-cloud/what-is-hybrid-cloud/
https://en.wikipedia.org/w/index.php?title=The_Mythical_Man-Month&oldid=1025350772
https://en.wikipedia.org/w/index.php?title=The_Mythical_Man-Month&oldid=1025350772
https://en.wikipedia.org/w/index.php?title=The_Mythical_Man-Month&oldid=1025350772


772.
———. 2021b. “Cloud Native Computing Foundation.” https://en.wikipedia.o

rg/w/index.php?title=Cloud_Native_Computing_Foundation&oldid=103
4940082.

———. 2021c. “History of Supercomputing.” https://en.wikipedia.org/w/ind
ex.php?title=History_of_supercomputing&oldid=1034423047.

Younge, Andrew J. 2019. “A Case for Portability and Reproducibility of HPC
Containers.” SAND2019-14107C. Sandia National Lab. (SNL-NM), Albu-
querque, NM (United States).

27

https://en.wikipedia.org/w/index.php?title=The_Mythical_Man-Month&oldid=1025350772
https://en.wikipedia.org/w/index.php?title=Cloud_Native_Computing_Foundation&oldid=1034940082
https://en.wikipedia.org/w/index.php?title=Cloud_Native_Computing_Foundation&oldid=1034940082
https://en.wikipedia.org/w/index.php?title=Cloud_Native_Computing_Foundation&oldid=1034940082
https://en.wikipedia.org/w/index.php?title=History_of_supercomputing&oldid=1034423047
https://en.wikipedia.org/w/index.php?title=History_of_supercomputing&oldid=1034423047

	Abstract
	Introduction
	What is DevOps?
	DevOps as the Driver of the Cloud

	What is Rse-ops?

	Comparison of RSE-ops vs. DevOps
	What are the goals of each?
	Who is involved?
	Accessibility for RSE-ops vs. DevOps
	Maintenance for RSE-ops vs. DevOps
	Scientific Software for RSE-ops vs. DevOps
	Best Practices for Scientific Software

	Testing for RSE-ops vs. DevOps
	Testing Scientific Software
	Testing of Resources

	Scaling for RSE-ops vs. DevOps
	Software Distribution for RSE-ops vs. DevOps
	Dependency Management for RSE-ops vs. DevOps
	Permissions for RSE-ops vs. DevOps
	Portability for RSE-ops vs DevOps
	Community standards for RSE-ops vs. DevOps
	Continuous Integration for RSE-ops vs. DevOps
	Continuous Deployment for RSE-ops vs. DevOps
	Monitoring for RSE-ops vs. DevOps
	Security for RSE-ops vs. DevOps

	Why can’t RSE-ops follow DevOps?
	Informing one another: metadata for containers
	Use Case: Architecture and Host-aware Pulls
	Use Case: Container Discoverability
	Use Case: Dynamic Builds
	Optimization
	Use Case: Scheduler

	A Harder Challenge is Changing Culture
	Mapping the Space
	Summary of Opportunities
	References

